СОГЛАСОВАНО
Руководитель ГНИ СИ ФГУП "ВНИИМС"
В.Н. Яншин
2009 г

СЧЕТЧИКИ ХОЛОДНОЙ И ГОРЯЧЕЙ ВОДЫ ВСХН, ВСХНд, ВСГН, ВСТН.

Методика поверки

Настоящая методика поверки распространяется на счетчики холодной и горячей воды ВСХН, ВСХНд, ВСГН, ВСТН, изготовленные "APATOR POWOGAZ S.A.", Польша и устанавливает методы и средства их поверки.

Межповерочный интервал:

- для счетчиков холодной воды 6 лет;
- для счетчиков горячей воды 4 года.

1 Операции поверки

1.1 При проведении поверки должны выполняться следующие операции, указанные таблице 1.

Таблица 1.

№ п.п.	Наименование операции	Номер пункта мето-	
		дики поверки	
1.	Внешний осмотр	4.1.	
2.	Проверка герметичности	4.2.	
3.	Определение метрологических характеристик:	4.3.	
4.	Проверка соответствия отсчетного устройства счетчика и		
	числа импульсов дистанционного выходного сигнала	4.4.	

2 Средства поверки и вспомогательное оборудование

- 2.1. При поведении поверки применяют следующие эталонные средства и вспомогательное оборудование.
- 2.1.1. Поверочная установка по ГОСТ 8.156-83, диапазон расходов от 0,45 до 1000 м³/ч, относительная погрешность при измерении объема воды не более 0,5 % (например, установки для поверки счетчиков и преобразователей объема воды УПВ или установка поверочная расходомерная ПРУВ/ПС-0,05/1000).
- 2.1.2. Термометр с абсолютной погрешностью и ценой деления не более 1°C по ГОСТ 28498-90.
 - 2.1.3. Аспирационный психрометр барометр по ГОСТ 6853-74.
 - 2.1.4. Ампервольтомметр 4437 ГОСТ 8711-93.
- 2.1.5. Манометр показывающий, верхний предел измерений 2,4 МПа (24 кгс/см 2), класс точности 1.
 - 2.1.6. Гидравлический пресс со статическим давлением до 2,4 МПа (24 кгс/см²).
- 2.2. Все эталонные средства поверки должны быть поверены и иметь действующие свидетельства о поверке или оттиски поверительных клейм.
- 2.3. Допускается применять другие эталонные СИ с характеристиками не хуже, указанных в п.2.1.

3. Требования безопасности и к квалификации поверителей.

- 3.1. К поверке допускают лиц, изучивших эксплуатационную документацию на счетчики и средства поверки, правила пожарной безопасности, действующие на предприятии и утвержденные в установленном порядке, а также правила выполнения работ в соответствии с технической документацией, прошедших обучение и инструктаж по технике безопасности труда в соответствии с ГОСТ 12.0.004 90 и аттестованных в качестве поверителя.
- 3.2. При поверке счетчиков соблюдают требования в соответствии с эксплуатационной документацией на установку и счетчики.

4 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- 4.1 Температура воды от 5 до 40 °C.
- 4.2 Температура окружающего воздуха от 5 до 50 °C.
- 4.3 Относительная влажность от 30 до 80 %.
- 4.4 Атмосферное давление от 84 до 106,7 кПа.
- 4.5 Отсутствие вибрации тряски и ударов, влияющих на работу счетчиков.
- 4.6 Изменение температуры воды в течение поверки не должно превышать 5 °C. Температуру воды измеряют в начале и в конце поверки непосредственно в эталонной мере вместимости или за счетчиком.
- 4.7 Счетчики должны быть установлены на поверочной установке по одному или последовательно по несколько штук. Число счётчиков в группе должно обеспечить возможность их поверки при наибольшем расходе. Счётчики должны иметь одинаковый диаметр условного прохода. Счётчики следует присоединять к трубопроводу поверочной установки через переходные или промежуточные патрубки, длина которых должна быть не менее 5 \mathcal{A}_{y} перед первым и 1 \mathcal{A}_{y} после каждого последующего счетчика, где \mathcal{A}_{y} диаметр условного прохода счётчика.
 - 4.8. Стрелка на корпусе счётчика должна совпадать с направлением потока воды.

5 Подготовка к поверке

- 5.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- подготавливают к работе поверочную установку и средства измерения согласно их инструкциям по монтажу и эксплуатации;
- устанавливают счётчик или группу счётчиков на испытательном стенде поверочной установки;
- проверяют герметичность соединений счётчиков с трубопроводами и между собой. Проверку производят давлением воды в системе при открытом запорном устройстве перед счётчиком и закрытом после него;
- пропускают воду через счётчики при максимальном поверочном расходе для полного удаления воздуха из системы.

6 Проведение поверки

6.1 Внешний осмотр.

При внешнем осмотре счетчиков должно быть установлено:

- соответствие комплектности требованиям эксплуатационной документации на счётчик;
 - отсутствие механических повреждений, влияющих на его работоспособность;
- отсутствие дефектов, препятствующих чтению надписей, маркировки и на показывающем устройстве.

Результаты внешнего осмотра считают положительными, если выполняются вышеперечисленные условия.

6.2 Проверка герметичности.

Герметичность счетчиков проверяют созданием гидравлическим прессом в рабочей полости счетчика давления $2,4\pm0,1\,$ МПа ($24\,$ кгс/см 2) и выдерживают счетчик под давление в течение $15\,$ минут.

Результаты поверки считают положительными, если в процессе проверки в местах соединений и корпусе счетчика не наблюдается отпотевания, каплепадений или течи воды, а также отсутствует падение давления воды по контрольному манометру.

- 6.3 Определение метрологических характеристик.
- 6.3.1 Определение относительной погрешности счётчиков.
- 6.3.1.1 Относительную погрешность счётчиков определяют на трёх поверочных расходах (минимальном, переходном и номинальном). На каждом расходе необходимо выполнить одно измерение. Значения поверочных расходов для счётчиков приведены в таблицах 2 и 3.

Таблица 2. Значения поверочных расходов для счётчиков типа ВСХН, ВСХНд

Two man is a sum is man in a sept of man is provided that is a sept of man							
Диаметр		Поверочный расход, м ³ /ч					
условного	1 (минимальный)		2 (переходный)		3 (номинальный)		
прохода, мм	Q _{min}	Q_{min} предельное Q_{t} пред		предельное от-	Q _{nom}	Предельное	
		отклонение		клонение		отклонение	
40	0,45	+0,045	0,9	+0,09	30	±3,0	
50	0,45	+0,045	0,9	+0,09	50	±5,0	
65	0,45	+0,045	1	+0,1	60	±6,0	
80	0,5	+0,05	0,8	+0,12	120	±12,0	
100	0,6	+0,06	1,8	+0,18	230	±23,0	
125	1,5	+0,15	2,0	+0,2	250	±25,0	
150	1,8	+0,18	4	+0,4	400	±40,0	
200	4	+0,4	6	+0,6	750	±75,0	
250	10	+1,0	16	+1,6	1100	±110,0	

Таблица 3. Значения поверочных расходов для счётчиков типа ВСГН и ВСТН

Диаметр	Поверочный расход, м ³ /ч					
условного	1 (минимальный)		2 (переходный)		3 (номинальный)	
прохода, мм	Q_{\min}	предельное	Q_{t}	предельное от-	Q_{nom}	предельное
		отклонение		клонение		отклонение
40	0,7	+0,07	1,5	+0,15	15	±1,5
50	0,7	+0,07	1,5	+0,15	15	±1,5
65	1,0	+0,1	2,0	+0,2	25	±2,5
80	1,6	+0,16	3,2	+0,32	45	±4,5
100	2,4	+0,24	4,8	+0,48	70	±7,0
125	4,0	+0,4	8,0	+0,8	100	±10,0
150	6	+0,6	12	+1,2	150	±15,0
200	10	+1,0	20	+2,0	250	±25,0
250	20	+2,0	40	+4,0	500	±50,0

6.3.1.2 Значения минимальных объёмов воды пропускаемых через счетчик на каждом поверочном расходе приведены в таблице 4.

Таблица 4. Значения минимальных объёмов воды

Twomay II one items and the control bods.					
Диаметр услов- ного прохода, мм.	Минимальный объем воды, пропущенный за время поверки, м ³	Минимальный объем воды за пропуск при расходе, м ³			
		1	2	3	
40, 50, 65	0,350	0,050	0,100	0,200	
80, 100, 125, 150	1,750	0,250	0,500	1,000	
200, 250	6,500	0,500	1,000	5,000	

6.3.1.3 Относительную погрешность счетчиков определяют по результатам измерения одного и того же объема воды, пропущенного через счетчик и измеренного эталонной поверочной установкой.

Относительную погрешность счётчика в процентах для каждого поверочного расхода определяют по формуле:

$$\delta V = \frac{V - V_0}{V_0} \times 100\% \tag{1}$$

где

V - объем воды, измеренный поверяемым счетчиком, M^3 ; V_0 - объем воды, измеренный эталонной установкой, M^3 .

4.3.1.4 Определение относительной погрешности крыльчатых счетчиков Ду 15,20,25 мм может осуществляться на эталонной установке с оптоэлектронным узлом съема сигналов.

Объем воды, измеренный счетчиком, определяют за каждый пропуск воды по числу импульсов, считанных узлом съема сигналов и зарегистрированных счетчиком импульсов по формуле.

$$V = K \times N \tag{2}$$

где

N- число импульсов;

К- передаточный коэффициент счетчика.

Относительную погрешность счетчика определяют по формуле (1).

- 6.3.1.5 Результаты поверки считают положительными, если относительная погрешность счётчика не более 5 % на первом поверочном расходе (минимальном) и не более 2 % на втором и третьем поверочных расходах (переходном и номинальном).
- 6.4 Проверка соответствия отсчётного устройства счётчика и числа импульсов дистанционного выходного сигнала.
 - 6.4.1 Проверка проводятся только для счетчиков ВСХНд, ВСТН.
- 6.4.2 Проверка проводится с помощью комбинированного прибора (ампервольтомметр) подключаемого к выходным контактным зажимам узла съёма информации в режиме измерения сопротивления, согласно приложению А. Проверка может осуществляться непосредственно на установке, для определения относительной погрешности при любом расходе от Q_{\min} до Q_{nom} . По отклонению стрелки ампервольтомметра определяется работоспособность магнитоуправляемого контакта на замыкание.
- 6.4.3. Результаты проверки считают положительными, если за один полный оборот стрелки с магнитом происходит одно замыкание магнитоуправляемого контакта.

7 Оформление результатов поверки

- 7.1 При положительных результатах поверки пломбы с оттиском поверительного клейма навешиваются в местах, препятствующих доступу к механизму указателя суммарного объема и регулирующему устройству счетчика. Результаты поверки заносятся в паспорт и удостоверяют подписью поверителя и оттиском поверительного клейма.
 - 7.2 Результаты поверки заносятся в протоколы по форме ГОСТ 8.156-83
- 7.3 Счетчики не прошедшие поверку к выпуску и применению не допускаются. Пломбы с оттиском клейма снимаются, запись в паспорте гасят.

Приложение А.

Схема проверки импульсов дистанционного выходного сигнала счётчика воды ВСХНд, ВСТН.

PRI - ампервольтомметр тип 4437