

Расходомер-счетчик электромагнитный Питерфлоу

ТРОН.407112.011 ИМ

Расходомер электромагнитный Питерфлоу РС

ТРОН.407111.001 ИМ

Инструкция по монтажу

Редакция 1.15

ООО «ТЕРМОТРОНИК»

193318, Россия, Санкт-Петербург, ул. Ворошилова, д.2 Телефон, факс: +7 (812) 326-10-50 Сайт ООО «ТЕРМОТРОНИК»: www.termotronic.ru Служба технической поддержки: support@termotronic.ru тел. 8-800-333-10-34

Содержание

1	Примене	ение		•••••					•••••	3
2	Подгото	вка к м	юнтажу							3
3	Выбор м	иеста у	становки							3
3.1	І Общи	ие поло	жения							3
3.2	2 Требо	ования	к месту уст	гановки	1					4
3.3	3 Учет	направ	ления двих	кения и	ізмеряем	лой жидко	ости			4
3.4	1 Требо	ования	к длине пр	ямых у	частков.					5
4	Порядон	« устан	овки расх	одомер	ра на тру	убопров	од			6
4.1	I Монта	аж расх	кодомеров	на мета	алличес	ких трубс	проводах			7
4.2	2 Монта	аж расх	кодомеров	на пла	стиковых	с трубопр	оводах			9
5	Защита	от блух	кдающих -	гоков и	и помех					10
5.1										
6	Монтаж	электр	ических с	оедине	эний					11
6.1	I Подкі	пючени	е электрич	еских ц	цепей					11
6.2										
6.3										
При	ложение	А – Габ	баритные	имитат	горы ПИ	ТЕРФЛС	у			16
ВНИ	ІМАНИЕ!	МЕС ^Т НЕ Д	ПРОВЕД ТЕ ОПУСКАЕ наличие	ЭКС	ПЛУАТА	КТРОСВ. АЦИИ цомерах	АРОЧНЫХ РА(напряже	СХОДС		ОВ

протекание через корпус расходомеров сварочного тока.

1 Применение

Инструкция по монтажу распространяется на расходомеры утвержденных типов: Питерфлоу PC рег. 46814-11 (расходомеры Питерфлоу PC) и Питерфлоу рег. 66324-16 (расходомеры-счетчики Питерфлоу исполнения PC, К и CB).

2 Подготовка к монтажу

Транспортировка расходомера к месту монтажа должна осуществляться в заводской таре.

После транспортировки при отрицательной температуре необходимо выдержать расходомер в упаковке не менее **8 часов** при температуре **+20**±**5**°C.

При распаковке расходомер освобождают от тары, проверяют внешний вид, сохранность пломб и комплектность в соответствии с паспортом.

Перед монтажом в случае необходимости (для возможности поворота электронного блока) следует отвернуть невыпадающие винты.

3 Выбор места установки

3.1 Общие положения

Для нормального функционирования расходомера необходимо чтобы расходомер был постоянно заполнен измеряемой жидкостью.

В случае неполного заполнения (завоздушивания) канала появляются ошибки измерения. Поэтому при монтаже следует выполнять следующие условия:

- Не устанавливать расходомер в самой высокой точке системы;
- Не устанавливать расходомер в трубопроводе с открытым концом.

Рекомендуемые варианты установки расходомера приведены на рис. 1.

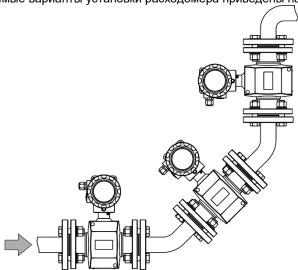
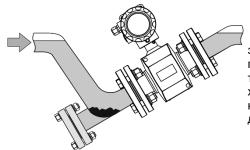
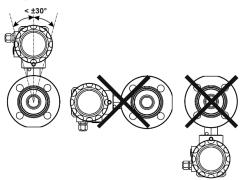



Рисунок 1 Рекомендуемые варианты установки

ВНИМАНИЕ! При установке расходомера на восходящем участке трубопровода фитинг (гермоввод) должен быть направлен вниз.


Примечание Наличие грязевиков или дополнительных фильтров не требуется.

В системах тепло- и водоснабжения в случае невозможности установки расходомера в рекомендуемых местах допускается монтаж на горизонтальных участках местных изгибов трубопроводов с высотой не более 1 м.

При измерении расхода в частично заполненных трубопроводах или в трубопроводах или в трубопроводах с открытым концом для гарантированного заполнения жидкостью, расходомер следует устанавливать в наклонном или U-образном трубопроводах (рис.2).

Рисунок 2 Установка расходомера в частично заполненном трубопроводе

На горизонтальных участках расходомер устанавливается электронным блоком вверх. Максимальное отклонение от вертикальной оси не более чем на 30° (рис. 3).

Рисунок 3 Установка на горизонтальных участках трубопровода

3.2 Требования к месту установки

Установку расходомера следует производить в местах, где трубопровод не подвержен вибрации. При возможной вибрации трубопровода в диапазоне частот и амплитуд, превышающих допустимые для расходомера значения, трубопровод до и после расходомера должен опираться на неподвижное основание.

3.3 Учет направления движения измеряемой жидкости

При установке расходомера на трубопровод следует учитывать динамические диапазоны в прямом и обратном направлениях (класс расходомера) и режимы настройки импульсного выхода.

При использовании режимов с раздельным измерением потока (прямом или обратном) стрелка на корпусе расходомера должна совпадать с направлением потока в трубопроводе. Если в процессе эксплуатации направление потока в трубопроводе

меняется, то расходомер устанавливается стрелкой по потоку, при котором требуются измерения с максимальным динамическим диапазоном.

3.4 Требования к длине прямых участков

Расходомер необходимо располагать в той части трубопровода, где пульсации и завихрения минимальны. При установке необходимо обеспечить прямолинейные участки трубопровода до и после расходомера.

В случае применения расходомера для реверсного измерения потока длина прямого участка **ПОСЛЕ** расходомера определяется также, как и для участка **ДО** расходомера.

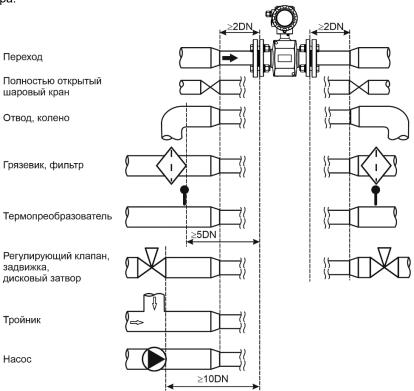


Рисунок 4 Требования к длине прямых участков

Примечания: 1) Длины прямых участков указаны в DN расходомера.

2) Шаровый кран полнопроходной или стандартнопроходной.

4 Порядок установки расходомера на трубопровод

Расходомеры устанавливаются как в металлические, так и в пластиковые трубопроводы.

Расходомер монтируется в разрыв трубопровода. Способ установки расходомеров зависит от исполнений (фланцевое, сэндвич или муфтовое) (рис. 5 ... 7).

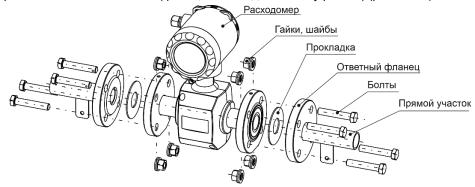


Рисунок 5 Установка расходомера фланцевого исполнения

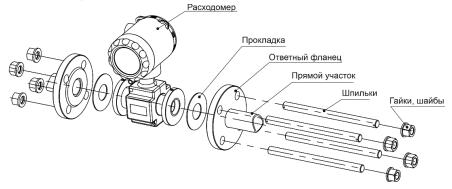
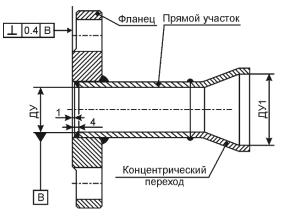


Рисунок 6 Установка расходомера исполнения сэндвич

Рисунок 7 Установка расходомера муфтового исполнения

Примечание Фланцы, шпильки (болты), гайки и шайбы в комплект поставки Питерфлоу не входят.

4.1 Монтаж расходомеров на металлических трубопроводах


Монтаж расходомеров на металлических трубопроводах рекомендуется выполнять с применением присоединительных модулей МП-РС производства ООО «ТЕР-МОТРОНИК».

Возможно самостоятельное изготовление присоединительного модуля (рис. 8). Для изготовления модуля применяются:

- фланцы по ГОСТ 33259-2015 на номинальное давление PN16 для ДУ20-100; PN25 для ДУ150-200; номер типа фланца 01; исполнение уплотнительной поверхности В. Требования к точности установки фланцев приведены на рис. 8.
 - прямые участки из труб:
 - ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные;
 - ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные;
 - ГОСТ 10704-91 Трубы стальные электросварные прямошовные.

Отклонения внутренних диаметров трубопроводов на прямых участках до и после расходомера не должно превышать величин, приведенных в табл. 1. Минимальная длина прямых участков приведена в разделе 3.4 Требования к длине прямых участков.

– концентрические переходы по ГОСТ 17378-2001, если диаметры трубопроводов (ДУ1) и расходомера (ДУ) не совпадают.

Таблица 1				
ДУ	Внутренний диаметр трубопровода, мм			
20	20 ± 1,5			
25	25 ± 1,5			
32	32 ± 1,5			
40	40 ± 1,6			
50	50 ± 1,7			
65	65 ± 2			
80	80 ± 2,4			
100	100 ± 2,4			
150	150 ± 4			
200	200 ± 8			

Рисунок 8 Присоединительный модуль

Для уплотнения соединений используются прокладки из комплекта поставки.

Разрешается использовать прокладки из паронита ПОН-Б по ГОСТ 15180-86 (исполнению A). Рабочее давление не ниже 2,5 МПа.

Прокладки не должны заходить в проточную часть трубопровода по внутреннему диаметру за границы уплотняемых поверхностей.

Для подключения защитных токопроводов из комплекта поставки расходомера в ответных фланцах необходимо выполнить отверстия под винт М5 или приварить винт М5 (рис. 9).

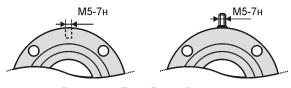


Рисунок 9 Доработка фланцев

ВНИМАНИЕ! Во избежание повреждения расходомера монтажно-сварочные работы следует производить с использованием габаритного имитатора. Размеры имитатора приведены в Приложении А.

Перед установкой расходомера на трубопровод присоединительные модули и габаритный имитатор должны быть собраны в единую конструкцию с помощью шпилек или болтов (рис.10).

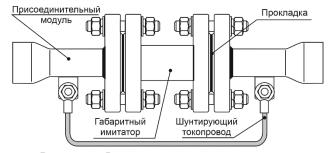


Рисунок 10 Внешний вид единой конструкции

В нижней части единой конструкции установить шунтирующий токопровод (медный проводник сечением не менее 6 мм² или стальная полоса - не менее 20 мм²).

Установка единой конструкции на трубопровод выполняется в следующей последовательности:

- 1. Замерить длину единой конструкции;
- Закрепить трубопровод с целью исключения нарушения соосности после его разрезания;
- Вырезать участок трубопровода с учётом измеренной длины единой конструкции и технологических допусков на сварку;
- 4. Приварить единую конструкцию к трубопроводу. При этом места крепления защитных токопроводов на фланцах должны располагаться в верхней точке.

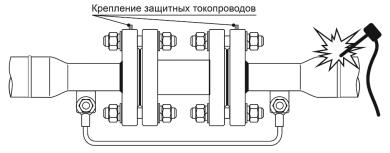


Рисунок 11 Приварка единой конструкции

Установка расходомера в трубопровод должна производиться после завершения всех сварочных, промывочных и гидравлических работ.

Установка расходомера выполняется в следующей последовательности:

- 1. Отсоединить габаритный имитатор.
- 2. Уложить прокладки.
- 3. Установить расходомер между фланцами и зафиксировать его шпильками (болтами).
 - 4. Отцентрировать внутренние отверстия трубопровода и расходомера.
 - 5. Затянуть гайки шпилек (болтов).

Затяжку шпилек и гаек, крепящих расходомер на трубопроводе, производить равномерно, поочерёдно, по диаметрально противоположным парам (рис. 12).

Закручивание гаек осуществляется за три прохода. За первый проход затяжку выполнять крутящим моментом 0,5 Мк, за второй проход – 0,8 Мк и за третий проход – 1.0 Мк. Моменты силы при закручивании гаек приведены в табл. 2.

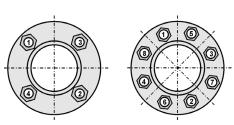


Рисунок 12 Порядок затяжки гаек


	Таблица 2 Рекомендуемые моменты силы пр						
	закручивании гаек						
	Ду	Болты (шпильки)	Моменты силы при закручивании гаек Мк, Нм				
-	20	4′ M12	15				
	25, 32		25				
	40		25				
	50	4′ M16	35				
	65		35				
	80		35				
	100	8′ M16	50				
	150	8′ M24	90				
	200	12´M26	90				

6. Выполнить подключения защитных токопроводов из комплекта поставки расходомера согласно раздела 5 Защита от блуждающих токов и помех.

4.2 Монтаж расходомеров на пластиковых трубопроводах

Монтаж расходомеров на пластиковых трубопроводах выполняется с применением фитингов (бурты, фланцы, переходные муфты) от производителей трубопроводов.

В случае несовпадения диаметров трубопровода (ДУ1) и расходомера (ДУ) применяются переходные муфты. В зависимости от производителя муфты могут быть с резким или плавным переходом.

Переходная муфта с резким переходом Переходная муфта с плавным переходом

При использовании переходной муфты с резким переходом длина прямого участка от перехода до расходомера должна составлять не менее 5ДУ.

Длины прямых участков для различных типов гидравлических сопротивлений соответствуют данным, указанных в разделе 3.4 Требования к длине прямых участков.

5 Защита от блуждающих токов и помех

Для обеспечения заявленной точности измерений необходимо исключить влияние на расходомер блуждающих токов на трубопроводе и помех по цепям питания.

Для защиты расходомера от протекающих по трубе токов применяются защитные токопроводы из комплекта поставки и шунтирующий токопровод, выполненный из медного проводника сечением не менее 6 мм² или стальной полосы сечением не менее 20 мм².

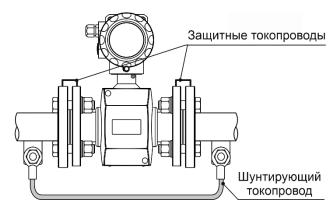


Рисунок 13 Подключение защитных и шунтирующего токопроводов При сильных помехах шунтирующий токопровод **заземляется**.

При установке расходомера на пластиковых трубах защитные и шунтирующий токопроводы не требуются.

Примечание Для Питерфлоу муфтового исполнения защитные токопроводы не устанавливаются.

5.1 Защитное заземление

Рисунок 14 Защитное заземление

При сильных помехах на линиях питания либо подачи питания через длинные провода может наблюдаться повышенный шум измерений. Для исключения влияния сетевых помех необходимо соединить с землёй клеммы защитного заземления блока питания расходомера.

Примечания: 1) При отсутствии клеммы заземления на выходе блока питания заземляется минусовой выход.

 Блоки питания без клеммы заземления со стороны 220В не применять!

Питерфлоу

6 Монтаж электрических соединений

6.1 Подключение электрических цепей

Подключение внешних приборов к преобразователю производится с помощью кабельных линий связи посредством клеммника-розетки, входящего в комплект поставки.

Обозначение клемм разъема на задней стенке расходомера со степенью защиты IP65, IP66, IP67 приведена на рис. 15.

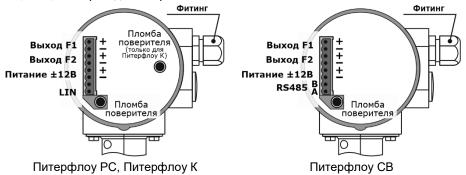
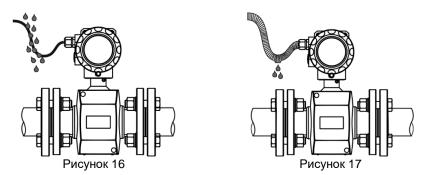


Рисунок 15 Разъем для подключения внешних соединений

Примечание Схема подключения расходомера Питерфлоу РС ПРО приведена в руководстве по эксплуатации.

Ввод кабеля питания и сигнальных кабелей в электронный блок расходомера осуществляется через фитинг для пластикового гофрошланга диаметром 16 мм.


Требования к соединительным проводам приведены в разделе 6.2 Требования к соединительным проводам.

Примечание При применении гофрошлангов тип кабеля любой.

При высоком уровне индустриальных помех, частоте выходного сигнала более 50 Гц, а также в случае длины кабельных линий более **10 м**, монтаж следует выполнять экранированным кабелем. Заземление экранированного кабеля допускается только с одной стороны (со стороны внешнего устройства).

Для защиты от механических воздействий кабели рекомендуется помещать в кабель-каналы, либо гофрированные трубы (пластиковые или металлические).

Подключаемые кабели должны иметь вид «U-петли», чтобы вода, попадающая на провода, не проникала в электронный блок (рис.16). В случае использования гофрошлангов следует предусмотреть дренажное отверстие для выпуска конденсата (рис. 17).

Питерфлоу со степенью защиты IP68 выпускается с подключенным экранированным кабелем UNITRONIC® LiYCY 8x0.5 с цветовой маркировкой DIN 47100, диаметр 8.7мм, длиной 5м (по умолчанию).

Схема подключения расходомера со степенью защиты IP68:

		Питерефлоу РС, - К		
Конт	Цвет кабеля	Цепь	Назначение	
1	белый	F1+	14	
2	коричневый	F1-	Импульсный выход F1	
3	зелёный	F2+	F0	
4	жёлтый	F2-	Импульсный выход F2	
5	серый	+12V	Питание 12 В	
6	розовый	- 12V	Питание 12 В	
7	голубой		Интерфейс LIN	
8	красный	LIN	интерфейс спи	

Питерфлоу СВ				
Цепь	Назначение			
F1+	14 × F4			
F1-	Импульсный выход F1			
F2+	14 × 50			
F2-	Импульсный выход F2			
+12V	Питание 12 В			
- 12V	Питание 12 В			
В	Интерфейс RS-485			
Α	интерфейс Ко-400			

После установки расходомера на трубопровод электронный блок (в случае необходимости) может быть повернут на ±90 град для удобства подключения и считывания показаний с индикатора. Порядок поворота электронного блока:

- Отвернуть фиксирующие винты;
- Повернуть блок в заданном направлении;
- Зафиксировать блок винтами.

Положение фиксирующих винтов в зависимости от ДУ расходомера показано на рис. 18.

Питерфлоу ДУ20...50

Питерфлоу ДУ 65...100

Рисунок 18 Положения винтов, фиксирующих электронный блок

Примечания: 1) Питерфлоу РС150 и РС200 фиксирующих винтов не имеет.

- Электронный блок в расходомерах со степенью защиты IP68 повороту не подлежит.
- Поворот электронного блока расходомера Питерфлоу К не предусмотрен.

6.2 Требования к соединительным проводам

При монтаже расходомера кабельные линии должны удовлетворять условиям:

- 1. сигнальные линии числоимпульсного выхода, LIN:
 - § сечение жил кабеляне менее 0,12 мм²;
- 2. кабели питания:
 - § сечение жил кабеля не менее 0,22 мм²;
 - § суммарное сопротивление обеих жил кабеляне более 5 Ом.

Допустимые длины линий связи:

Числоимпульсный выход – зависит от параметров входных цепей вторичного прибора (тепловычислителя).

Длина интерфейсного выхода LIN – до 50 м.

Зависимость максимальной длины линии питания от сечения провода представлена на рис. 19.

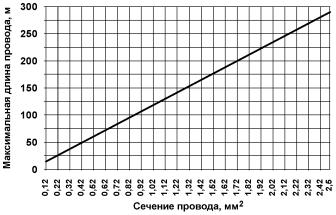


Рисунок 19 Расчет максимальной длины кабеля питания

6.3 Пломбирование

При вводе расходомера в эксплуатацию крепёжные детали должны быть опломбированы инспектором снабжающей организации.

Для расходомера фланцевого исполнения пломбирование выполняется путём установки навесной пломбы на два верхних болта (с отверстием диаметром 2 мм) из комплекта поставки МП-РС.

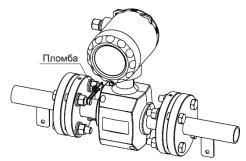


Рисунок 20 Пломбирование фланцевого расходомера

Для расходомера исполнения сэндвич пломбирование выполняется путём установки двух навесных пломб на верхние шпильки (с отверстиями диаметром 2 мм) из комплекта поставки МП-РС.

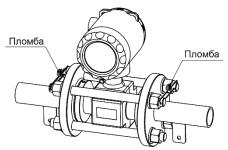


Рисунок 21 Пломбирование расходомера исполнения сэндвич

Для расходомера с муфтовым присоединением пломбирование выполняется путём установки навесной пломбы между накидными гайками крепления расходомера (с отверстиями диаметром 2 мм в корпусах гаек) из комплекта поставки МП-РС.

Рисунок 22 Пломбирование муфтового расходомера

Приложение А – Габаритные имитаторы ПИТЕРФЛОУ

Фланцевое исполнение	ДУ	L, мм		
	20	155		
	25	200		
	32	200		
<u> </u>	40	200		
ду + — +	50	200		
<u> </u>	65	200		
	100	250		
	150	328		
>	200	358		
Исполнение сэндвич	ДУ	L, мм		
]	20	111	
		25	111	
ду		32	128	
		40	128	
< L →		50	153	
Муфтовое исполнение	ДУ	L, мм	G	
ДУ	20	140	G1	
L >	32	170	G1½	